950 research outputs found

    Is there a semantic system for abstract words?

    Get PDF
    Two views on the semantics of concrete words are that their core mental representations are feature-based or are reconstructions of sensory experience. We argue that neither of these approaches is capable of representing the semantics of abstract words, which involve the representation of possibly hypothetical physical and mental states, the binding of entities within a structure, and the possible use of embedding (or recursion) in such structures. Brain based evidence in the form of dissociations between deficits related to concrete and abstract semantics corroborates the hypothesis. Neuroimaging evidence suggests that left lateral inferior frontal cortex supports those processes responsible for the representation of abstract words

    Confabulation: damage to a specific inferior medial prefrontal system

    Get PDF
    Confabulation, the pathological production of false memories, occurs following a variety of aetiologies involving the frontal lobes, and is frequently held to be underpinned by combined memory and executive deficits. However, the critical frontal regions and specific cognitive deficits involved are unclear. Studies in amnesic patients have associated confabulation with damage to the orbital and ventromedial prefrontal cortex. However neuroimaging studies have associated memory control processes which are assumed to underlie confabulation with the right lateral prefrontal cortex. We used a confabulation battery to investigate the occurrence and localisation of confabulation in an unselected series of 38 patients with focal frontal lesions. 12 patients with posterior lesions and 50 healthy controls were included for comparison. Significantly higher levels of confabulation were found in the Frontal group, confirming previous reports. More detailed grouping according to lesion location within the frontal lobe revealed that patients with orbital, medial and left lateral damage confabulated in response to questions probing personal episodic memory. Patients with orbital, medial and right lateral damage confabulated in response to questions probing orientation to time. Performance-led analysis revealed that all patients who produced a total number of confabulations outside the normal range had a lesion affecting either the orbital region or inferior portion of the anterior cingulate. These data provide striking evidence that the critical deficit for confabulation has its anatomical location in the inferior medial frontal lobe. Performance on tests of memory and executive functioning showed considerable variability. Although a degree of memory impairment does seem necessary, performance on traditional executive tests is less helpful in explaining confabulation

    Effects of focal frontal lesions on response inhibition

    Get PDF
    This study examined the performance of 38 normal subjects and 43 patients with focal lesions of the frontal lobes on a simple go-nogo task where the probability of the nogo stimulus was either 75% or 25%. Patients with lesions to the superior medial parts of the frontal lobes, in particular to the left superior portion of Brodmann area 6 (which includes the supplementary motor areas and the premotor areas for the right hand) had an increased number of false alarms (incorrect responses to the nogo stimulus). These results indicate that area 6 is specifically involved in the inhibition of response. Patients with lesions to the right anterior cingulate (areas 24 and 32) were slower and more variable in their reaction time. These findings could be explained by an inability to sustain stimulus-response contingencies. Lesions to the right ventrolateral prefrontal cortex (Brodmann areas 44, 45, 47) also increased the variability of response, perhaps by disrupting monitoring performance

    ARE THE PROPERTIES OF CELLS RELEVANT FOR UNDERSTANDING CONSCIOUSNESS

    Get PDF

    Major Thought Restructuring: The Roles of Different Prefrontal Cortical Regions

    Get PDF
    An important question for understanding the neural basis of problem solving is whether the regions of human prefrontal cortices play qualitatively different roles in the major cognitive restructuring required to solve difficult problems. However, investigating this question using neuroimaging faces a major dilemma: either the problems do not require major cognitive restructuring, or if they do, the restructuring typically happens once, rendering repeated measurements of the critical mental process impossible. To circumvent these problems, young adult participants were challenged with a one-dimensional Subtraction (or Nim) problem [Bouton, C. L. Nim, a game with a complete mathematical theory. The Annals of Mathematics, 3, 35-39, 1901] that can be tackled using two possible strategies. One, often used initially, is effortful, slow, and error-prone, whereas the abstract solution, once achieved, is easier, quicker, and more accurate. Behaviorally, success was strongly correlated with sex. Using voxel-based morphometry analysis controlling for sex, we found that participants who found the more abstract strategy (i.e., Solvers) had more gray matter volume in the anterior medial, ventrolateral prefrontal, and parietal cortices compared with those who never switched from the initial effortful strategy (i.e., Explorers). Removing the sex covariate showed higher gray matter volume in Solvers (vs. Explorers) in the right ventrolateral prefrontal and left parietal cortex

    Is the Weigl Colour-Form Sorting Test Specific to Frontal Lobe Damage?

    Get PDF
    OBJECTIVE: The Weigl Colour-Form Sorting Test is a brief, widely used test of executive function. So far, it is unknown whether this test is specific to frontal lobe damage. Our aim was to investigate Weigl performance in patients with focal, unilateral, left or right, frontal, or non-frontal lesions. METHOD: We retrospectively analysed data from patients with focal, unilateral, left or right, frontal (n = 37), or non-frontal (n = 46) lesions who had completed the Weigl. Pass/failure (two correct solutions/less than two correct solutions) and errors were analysed. RESULTS: A greater proportion of frontal patients failed the Weigl than non-frontal patients, which was highly significant (p < 0.001). In patients who failed the test, a significantly greater proportion of frontal patients provided the same solution twice. No significant differences in Weigl performance were found between patients with left versus right hemisphere lesions or left versus right frontal lesions. There was no significant correlation between performance on the Weigl and tests tapping fluid intelligence. CONCLUSIONS: The Weigl is specific to frontal lobe lesions and not underpinned by fluid intelligence. Both pass/failure on this test and error types are informative. Hence, the Weigl is suitable for assessing frontal lobe dysfunction

    Mapping task-switching in frontal cortex through neuropsychological group studies

    Get PDF
    This paper considers evidence provided by large neuropsychological group studies and meta-analyses of functional imaging experiments on the location in frontal cortex of the subprocesses involved in the carrying out of task-switching paradigms. The function of the individual subprocesses is also considered in the light of analyses of the performance of normal subjects

    The Prefrontal Cortex and Neurological Impairments of Active Thought

    Get PDF
    This article reviews the effects of lesions to the frontal cortex on the ability to carry out active thought, namely, to reason, think flexibly, produce strategies, and formulate and realize plans. We discuss how and why relevant neuropsychological studies should be carried out. The relationships between active thought and both intelligence and language are considered. The following basic processes necessary for effective active thought are reviewed: concentration, set switching, inhibiting potentiated responses, and monitoring and checking. Different forms of active thought are then addressed: abstraction, deduction, reasoning in well-structured and ill-structured problem spaces, novel strategy generation, and planning. We conclude that neuropsychological findings are valuable for providing information on systems rather than networks, especially information concerning prefrontal lateralization of function. We present a synthesis of the respective roles of the left and right lateral prefrontal cortex in active thought

    Multiple Effects of Prefrontal Lesions on Task-Switching

    Get PDF
    This study examined the performance of 41 patients with focal prefrontal cortical lesions and 38 healthy controls on a task-switching procedure. Three different conditions were evaluated: single tasks without switches and two switching tasks with the currently relevant task signalled either 1500 ms (Long Cue) or 200 ms (Short Cue) before the stimulus. Patients with Superior Medial lesions showed both a general slowing of reaction time (RT) and a significantly increased switch cost as measured by RT. No other prefrontal group showed this increased reaction time switch cost. Increased error rates in the switching conditions, on the other hand, were observed in patients with Inferior Medial lesions and, to a lesser extent, ones with Superior Medial lesions. Patients with left dorsolateral lesions (9/46v) showed slower learning of the task as indicated by a high error rate early on. Several different processes are involved in task-switching and these are selectively disrupted by lesions to specific areas of the frontal lobes

    Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits.

    Get PDF
    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H2(15)O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system
    corecore